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Symmetries and Conservation Laws in Theories
with Higher Derivatives

I. Damian1

Received March 17, 2000

The general variation of the action depending on derivatives of an arbitrary order
and two classes of variables is performed. The conservation of some generalized
magnitudes associated to space-time and internal symmetries are studied.

1. INTRODUCTION

Theories with high-order derivatives have been used in different fields
of physics. They are used for nonlocal theories and offer a realistic method
of regularization. The introduction of high-order derivatives has also been
proposed in supersymmetric theories [1, 6, 7]. In SUSY theories auxiliary
independent variables have been introduced and the Schwinger action princi-
ple generalized to include such variables [4]. In ref. 3 some symmetries in
theories in which the Lagrangian contains two classes of independent variables
and derivatives up to the second order have been examined. In the present
paper we extend the study of the symmetries for the case when higher order
derivatives are present in a Lagrangian with two classes of independent
variables.

We define the action by

A 5 # du dx L(xl, ua, wk, ­n
l...wk , ­r

a...wk) (1.1)

in which L is the Lagrangian density, xl are space-time variables, ua are the
suppplementary independent Grassmann variables, and wk are the generalized
coordinates (fields). The following notations have been used:
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dx 5 &
l

dxl du 5 &
a

dua

­n
l... 5 ­n/­xl­xm . . . ­r

a... 5 ­r/­ua ­ub . . . (1.2)

n 5 1, 2, . . . , Zn r 5 1, 2, . . . , Zr

in which Zn and Zr are the highest order of derivatives. For the sake of
simplicity we have assumed that L contains derivatives of the same maximum
order of all appearing functions in a class of variables.

2. THE ACTION PRINCIPLE AND FIELD EQUATIONS

The action principle with fixed boundaries for all integrals reads

d0 A 5 d0 # du dx L 5 # du # dx d0 L 5 0 (2.1)

where the variation d0 L is

d0 L 5 L(wk 1 d0wk , ­n
l...wk 1 d0­

n
l...wk , ­r

a...wk 1 d0­
r
a...wk) (2.2)

2 L(wk , ­n
l...wk , ­r

a...wk)

Applying a Taylor expansion to the first term on the right-hand side in
(2.2) and keeping only first order terms, we obtain

d0 L 5 o
k

­L
­wk

d0wk 1 o
k

o
n

o
(l)

­L
­(­n

l...wk)
d0­

n
l...wk

1 o
k

o
r

o
(a)

­L
­(­r

a...wk)
d0­

r
a...wk (2.3)

with short-hand notations

o
(l)

5 o
l

o
m

. . . , o
(a)

5 o
a

o
b

. . . (2.4)

In the sums we retain identical terms only once.
After lengthy calculation we obtain

d0 A 5 # du # dx H ­L
­wk

d0wk 1 o
r

o
(a)

(2 1)r1­r
a...

­L
­(­r

a...wk)2d0wk

1 o
h

­hFo
r

o
r21

f50 1o(a)
.h. (21)j ­ f

a...[h21]
­L

­(­r
a...hb...wk)2 ­r2f21

[h11] d0wkG
1 o

n
o
(l)

(21)n1­n
l...

­L
­(­n

l...wk)2d0wk
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1 o
r

­rFo
n

o
n21

g50 1o(l)
.r. (21)g ­g

l...[r21]

3
­L

­(­n
l...rm...wk)2 ­n2g21

[r11] d0wkGJ 5 0 (2.5)

in which h 5 [a 1 f ] and r 5 [a 1 g] and the subscripts .h. and .r. indicate
that the sums over these indices are missing. Summation over k was omitted
and it will be understood from now on.

One can see that the terms 3 and 5 vanish by integration because the
boundaries of the integrals are fixed, and since the variations d0wk are arbitrary
the remaining terms yield

­L
­wk

1 o
r

o
(a)

(21)r ­r
a...

­L
­(­r

a...wk)
1 o

n
o
(l)

(21)n ­r
l...

­L
­(­n

l...wk)
5 0 (2.6)

Considering the ua as Grassmann variables, we can interpret Eq. (2.6)
as the field equations in superspace with higher derivatives. If the highest
order of derivatives is 2, there result the equations of field obtained by
Borneas and Damian [3].

3. GENERAL VARIATION OF THE ACTION

The general variation of the action, including variation of the boundaries
of the integrals over xl, is

dA 5 d # du # dx L 5 # du d # dx L (3.1)

where

d # dx L 5 # (d dx)L 1 # dx dL (3.2)

and

# (d dx)L 5 # dx o
l

(­l dxl)L 5 # dx Fo
l

­l(L dxl) 2 o
l

(­lL) dxlG
(3.3)
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The variation of L is given by

dL 5
­L
­wk

dwk 1 o
r

o
(a)

­L
­(­r

a...wk)
d­r

a...wk

1 o
n

o
(l)

­L
­(­n

l...wk)
d­n

l...wk (3.4)

in which the increments are

dwk 5 d0wk 1 o
a

(­awk) dua 1 o
l

(­lwk) dxl (3.5)

d­r
a...wk 5 d0­

r
a...wk 1 o

ε
(­ε­

r
a...wk) duε 1 o

p
(­p­r

a...wk) dxp (3.6)

d­n
l...wk 5 d0­

n
l...wk 1 o

ε
(­ε­

n
l...wk) duε 1 o

p
(­p­n

l...wk) dxp (3.7)

Taking into account (3.2)–(3.7), after a long calculation, we can put the
variation (3.1) in the form

dA 5 # du # dx o
r

­rFo
Zn

h51
o

Zn21

f50
Bkp

hf d­h21
[r11]...wk

2 o
p
1o

Zn

h51
o

Zn21

f50
Bkp

hf ­p­h21
[r11]...wk 2 Ldpr2 dxp

2 o
p
1o

Zn

h51
o

Zn21

f50
Bkp

hf ­ε ­h21
[r11]...wk2 dug (3.8)

where

Bkp
hf 5 o

(l)
.r. (21) f ­ f

l...[r21]
­L

­(­ f1h
l...rm...wk)

(3.9)

and dpr is the Kronecker symbol.

4. SPACE-TIME INVARIANCE

We study now the invariance of the action under different transforma-
tions. First consider space-time infinitesimal transformations. In this case
only transformations dxp occur in (3.8) and the invariance of the action with
respect to these transformations reads

dA 5 # du # dx o
r

­r(27prdxp) 5 0 (4.1)

where we have denoted
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7pr 5 o
Zn

h51
o

Zn21

f50
Bkr

hf ­p­h21
[r11]..wk 2 Ldpr (4.2)

With dxp independent of xp, (4.1) can be written in the form

dA 5 # du # dx o
p
F21o

r
­r7pr2 dxpG 5 0 (4.3)

which, for arbitrary variation of dxp, leads to

o
r

­r7pr 5 0 (4.4)

The relation (4.4) indicates the conservation of the magnitude 7pr, which
we call the generalized energy tensor in the theory with high-order derivatives.
If one neglects the dependence of the Lagrangian on derivatives whose order
is higher than 1, one obtains the energy tensor from usual field theory,

Tpr 5
­L

­(­rwk)
­pwk 2 Ldpr (4.5)

which satisfies a conservation law in the form (4.4).
Let us now write the elementary variation of the independent variables

by the linear relations

dxp 5 o
s

epsxs 1 ep (4.6)

with

eps 1 esp 5 0 (4.7)

where e are first-order infinitesimals. Inserting (4.6) in (4.1), one obtains

dA 5 # du # dx o
r

­rH2o
p
F7pr1o

s
epsxs 1 ep2GJ

5 # du # dx o
r

­rF2o
p

o
s

7prepsxs 2 o
p

7prepG
5 # du # dx o

r
­rF2

1
2 o

p
o
s

(7prepsxs 1 7srespxp) 2 o
p

7prepG
5 # du # dx o

r
­rF2

1
2 o

p
o
s

(7prxs 2 7srxp)eps 2 o
p

7prepG
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5 # du # dx H2
1
2 o

p
o
s
Fo

r
­r(7prxs 2 7srxp)Geps

2 o
p
1o

r
­r7pr2epJ 5 0 (4.8)

If only transformations ep occur, this leads to the conversation law
(4.4). If separate transformations eps occur in (3.8), then one obtains the
conservation of the magnitude

5psr 5 7prxs 2 7srxp (4.9)

We observe that in the absence of high-order derivatives, 5psr reduces
to the “orbital” angular momentum tensor of the usual field theory, so we
are justified to consider the magnitude (4.9) as the generalized “orbital”
angular momentum tensor of the present theory.

If only dua transformations occur, the invariance of the action leads to
the conservation of the magnitude

Opr 5 o
Zn

h51
o

Zn21

f50
Bkp

hf ­ε ­h21
[r11]...wk (4.10)

which can eventually be interpreted in the frame of a supersymmetric theory
which considers auxiliary variables.

5. INTERNAL SYMMETRY IN CLASSICAL FIELDS

Let us consider a classical complex field wk and an infinitesimal phase
transformation of the form

w8k 5 wk 1 iεwk
(5.1)

w8*k 5 w*k 2 iεw*k

where ε is a real, arbitrary constant. So we also have

dwk 5 iεwk
(5.2)

dw*k 5 2iεw*k

and

­n
l...dwk 5 iε­n

l...wk
(5.3)

­n
l...dw*k 5 2iε­n

l...w*k
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We require the action to be invariant under the above transformations,
so, with dxl 5 dua 5 0, we have from (3.8) and (3.9)

­rFo
Zn

h51
o

Zn21

f50
o
(l)

.r. (21) f ­ f
l...[r21]

­L
­(­ f1h

l...rm...wk)
d­h21

[r11]...wk

1 o
Zn

h51
o

Zn21

f50
o
(l)

.r. (21) f ­ f
l...[r21]

­L

­(­ f1h
l...rm...w*k )

d­h21
[r11]...w*k G 5 0 (5.4)

Introducing (5.2) and (5.3) in (5.4), we obtain

­rIr 5 0 (5.5)

indicating the conservation of the magnitude

Ir 5 iεFo
Zn

h51
o

Zn21

f50
o
(l)

.r. (21) f ­ f
l...[r21]

­L
­(­ f1h

l...rm...wk)
­h21

[r11]...wk

1 o
Zn

h51
o

Zn21

f50
o
(l)

.r. (21) f ­ f
l...[r21]

­L

­(­ f1h
l...rm...w*k )

­h21
[r11]...w*k G (5.6)

which we interpret as the generalized four-vector current in the present theory.
If the highest order of derivatives in the Lagrangian is 2, one obtains the
result from Borneas and Damian [3], and in the absence of higher derivatives
all the supplementary terms cancel and Ir reduces to the usual four-vector
current.

The quantity

Q 5 2i # dV I4 (5.7)

is the total charge. For real fields, wk 5 w*k , and thus real fields are neutral.

6. INTERNAL SYMMETRY IN QUANTUM FIELDS

The infinitesimal unitary transformation of a quantum field wk is given by

wk → w8k 5 (1 1 iεLrGr)wk(1 1 iεLrGr)

5 wk 1 iεLr[Gr , wk] (6.1)

where Gr are generators of a Lie group.
Denoting

[Gr , wk] 5 (Mr)klwl (6.2)

one can write
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dwk 5 iεLr(Mr)klwk (6.3)

The Lagrangian must be invariant under this transformation; therefore
we write

dL 5
­L
­Lr

dLr 5
­L
­wk

dwk

dLr
dLr

1 o
n

o
(l)

­L
­(­n

l...wk)

d(­n
l...wk)

dLr
dLr 5 0 (6.4)

But we have

dwk

dLr
5 iε(Mr)klwl (6.5)

d(­n
l...wk)

dLr
5 ­n

l...
dwk

dLr
5 ­n

l...[iε(Mr)klwl] (6.6)

Introducing (6.5) and (6.6) in (6.4), one obtains

dL 5
­L
­wk

[iε(Mr)klwl] 1 o
n

o
(l)

­L
­(­n

l...wk)
­n

l...[iε(Mr)klwl] 5 0 (6.7)

Applying successively the general relation [2]

(21) f1­ f
l...[l1f21]

­L
­(­n

l...wk)2 ­n2f
[l1f]...[iε(Mr)klwl]

5 (21) f ­[l1f ]F1­ f
l...[l1f21]

­L
­(­n

l...wk)2 ­n2f21
[l1f11]...[iε(Mr)klwl]G

2 (21) f1­ f11
l...[l1f]

­L
­(­n

l...wk)2 ­n2f21
[l1f11]...[iε(Mr)klwl] (6.8)

to the second term of (6.7), one obtains

dL 5
­L
­wk

[iε(Mr)klwl]1 o
n

o
(l)

(21)n1­n
l...

­L
­(­n

l...wk)2[iε(Mr)klwl]

1 o
n

o
(l)

o
n21

f50
(21) f ­[l1f ]F1­ f

l...[l1f21]
­L

­(­n
l...wk)2

3 ­n2f21
[l1f11]...[iε(Mr)klwl]G 5 0 (6.9)
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We rearrange now the last term in (6.9), taking the derivative ­[l1f ]

outside the sums, denoting l 1 f 5 r and n 2 f 5 h, and limiting the
summation over f up to Zn 2 h. In view of (2.6) for this case, (6.9) yields

­rHo
Zn

h51
o
(l)

o
Zn2h

j50
(21) fF1­ f

l...[r21]
­L

­(­ f1h
l... wk)2 ­h21

[r11]...[iε(Mr)klwl]GJ5 0 (6.10)

We interpret the quantity

I 8r 5 o
Zn

h51
o
(l)

o
Zn2h

f50
(21) fF1­ f

l...[r21]
­L

­(­ f1h
l... wk)2 ­h21

[r11]...[iε(Mr)klwl]G (6.11)

as the generalized four-vector current and (6.10) represent its conservation.
As one can see, I 8p is made up of the usual four-vector current and supplemen-
tary terms due to including of high-order derivatives. Of course, as in the
classical case, there is a total charge containing a supplementary charge added
to the usual one, and the total charge is conserving, not the usual one.

7. CONCLUSIONS

The question of the absoluteness of many conservation laws has often
been discussed (for instance, Mohapatra [5] dealing with charge conservation).
Our approach has regarded some conservaton laws in the frame of a theory
with high-order derivatives and extends the results obtained in a previous
paper [3]. It results in the conservation of some generalized magnitudes which
are more complex than the corresponding classical ones. For instance, the
total (generalized) charge is conserved, but the usual charge is only conserved
in some cases, when the supplementary terms due to the presence of higher
derivatives in the Lagrangian are negligible.
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